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DIRECTIONAL SPLINES FOR ECONOMIC ANALYTICS 

 

 
Abstract. Paper presents the method of constructing a cubic spline for a 

set of points on a plane. It has been made comparison of the spline with 
Schoenberg B-spline and Akima and Kathmul-Rom splines. It is shown that for 

unequally spaced points, at which the disadvantages of the named splines are 

usually manifested, in comparison with the B-spline, it gives significantly lower 

oscillations. The spline with such a set of points is practically deprived of the 
strong kinks that are characteristic of Akima splines. It does not give loops and 

oscillations, which are a characteristic disadvantage of parametric splines, in 

particular, Hermitian ones, which includes the Kathmull-Rom spline. The 
optimization method of spline guide coefficient is proposed, the purpose of which is 

to minimize discontinuities of the second derivative function at its intermediate 

points. A fourth-order spline is also proposed, which is deprived of kinks and has 

lower emissions compared to the Schoenberg spline. The proposed method for 
blunting sharp peak curves can be applied to all types of splines. 

 

Keywords: B-spline, Akima spline, Catmull-Rom spline, directional spline, 
spline optimization.  
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1. Introduction 

 

In the field of economic analytics, after data collection, they are processed. 
In most cases, such data is the relationship between input and output quantities as a 

set of points 

(x0,y0), (x1,y1), …, (xn-1,yn-1), (xn,yn), xi-1<xi, i = 1,2,…,n.                 (1) 

In analytical reports and calculations based on it, it is often necessary to 

obtain a smooth curve that must pass through these points. 

This problem can be solved by using interpolation methods [(Powell, 1981; 
Atkinson, 1988; Volkov, 2004; Watson, 1980)]. The quality of the obtained curve 

on the graph can be accurately estimated visually or more strictly using a 

mathematical formulae. 
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Experience shows that for sets with a small number of points satisfactory 
results are obtained by the Lagrange, Newton, Stirling interpolation methods 

[Atkinson, 1988; Watson, 1980; Schatzman, 2002]. However, with an increase in 

the number of points in set (1), interpolation polynomials in the region of extreme 
points give unacceptably large amplitude oscillations  [Schatzman, 2002]. 

Splines are deprived of this drawback [Schoenberg, 1946; Ahlberg et al., 

1967; David et al., 1989; Cohen, 1969; Warnock, 1969; Watkins, 1970; Yanenko et 

al., 1970; Constantini et al., 1984; Ryabenky, 1974; Dietzeand Schmidt, 1988; 
Zavyalov et al., 1980; Miroshnichenko, 1995; Segeth, 2018]. The most famous 

among them is Schoenberg's B-spline [Schoenberg, 1946;Dobson, 1983; Hughes et 

al.,2005]. It ensures perfect smoothness of the curve for equidistant points xi (i = 
0,1, …, n ) for which 

h i= xi – xi-1 = h = const.                                                    (2) 

If  (2) is failed, then the smoothness of the curves, as a rule, is violated. In 
such cases, the B-spline can give significant oscillation curve (the so-called 

«ejections») that occur in the region of segments with small hi. 

The Akima spline [Akima, 1970; Krukovetsand Gorelkin, 2019] and 

Hermitian splines, a special case of which is the Catmull-Rom parametric spline 
[Catmulland Rom, 1974; Barry and Goldman, 1988] used in graphic geometry, can 

be used to avoid «ejections» of the B-spline. However, these splines have their 

drawbacks. 
So, the Akima spline often gives unacceptable kinks of the function graph 

at the nodal points, which are clearly visible in Figure 1 (curve 2). 

 

  
Figure 1. Graphs of the B-spline (1) 

and Akima spline (2) 

Figure 2. Linear interpolation 

spline (1) and Akima spline (2) 
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By the way, this spline does not always justify its purpose to build 
monotonic functions from ordered sequences of ordinates of a data set. 

Figure 2 shows an example of a graph where the mentioned sequence is 

ordered, but the Akima spline does not ensure the monotony of the curve 
constructed with its help. 

 Smoother transitions between neighboring polynomials are given by the 

Catmull-Rom splines (Figure 3). However, for small hi, they can form loops at 

nodal points. In addition to it, local extrema may appear on the parametric 
dependence x = x(t), which obviously should be monotonically increasing, which 

indicates obvious shortcomings of the interpolation algorithm when processing 

data sets containing points located at a relatively small distance from each other. 
 

  
Figure 3. Curves of the B-spline (1) 

and the Catmull-Rom spline (2) 

Figure 4. B-spline (1) and linear 

interpolation spline (2) 
 

Below, we consider a technique for constructing a spline, which is to a 

certain extent a compromise with respect to the mentioned splines: it is 

characterized by smaller «ejections» of B-splines and significantly less pronounced 
kinks of Akima splines. 

 

2. Construction of third degree directional spline (DS3-spline) 
 

On each segment [xi-1, xi] we will represent the spline S(x) as a third degree 
polynomial  

    ( ) , / , 1, 2,..., .i i i i i i iS x a t b t c d t t x x h i n      
 

(3) 

At the junctions of adjacent segments [xi-1, xi] for polynomials (3), it is 

required to fulfill the continuity conditions for spline and its first derivative at 

points (1)  
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1 1 1 1 1 1( ) ( ), ( ) ( ).i i i i i i i iS x S x S x S x     
  

                           
(4), (5)

 

Using (3) – (5) we get 

              

1

1

,

,

2 3 .

i i

i i i i i

i i i i

a y

a b c d y

b c d b








   
                                                          

(6)
 

If we consider bi known, then (6) allows us to obtain a system of equations 

for unknown coefficients ci, di 

1

,

2 3 ,

i i i i

i i i i

c d b v

c d b b 

  


                                                                     

(7) 

where 

1.i i iv y y    

Having solved (3) we find 

1 12 3 , 2 .i i i i i i i ic b b v d b b v      
                                    

(8) 

In the simplest case, for the extreme segments [x0, x1] and [xn-1, xn], we can 

use the derivative of the linear interpolation spline by setting 

0 1, .n nb v b v   

The same coefficients can be determined using the three-point construction 

(xi-1, yi-1), (xi, y i), (xi+1, yi+1) of the Lagrange interpolation polynomial [Atkinson, 
1988] 

    1 1 1

1

( ) , 1, 2,..., 1,
i i i i i i i i

i i

i i

u h u h u u x x x x
f x y i n

h h

  



         


 

 

   1 2 1 1

0 1 0 1 1

1 2 1

( ) , ( ) .
n n n

n n n n

n n

h u u h u u
b f x u b f x u

h h h h







 
      

 
 

 

For intermediate segments [xi-1, xi] it is used the formula 

                  1α (1 α) ,i i ib u u   
                                                        

(9) 

where coefficient  α 0,1 . 

From (4) – (9) it follows that on the segment [xi-1, xi] the function Si(x)  is 

completely determined by only three points, while the locality of the Akima spline 

is determined by five points [Akima, 1970], and the B-spline by all points of the set 
(1). This property characterizes the best comparative speed of the method in the 

correction of coefficients (3) in case of changes in individual points of the set (1). 
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The divided difference ui is the angular coefficient of the corresponding 
segment of the linear interpolation spline, which is shown in Figure 4. 

Obviously, (9) is the angular coefficient of the tangent at the point (xi, yi) 

of the conjugation of the spline segments located on both sides of it. By varying the 
coefficient α, one can adjust the position of the tangents at the intermediate points 

of the spline, directing it so that the «ejections» are minimal and the kinks are not 

too noticeable. We call such spline as directional, and α as directional coefficient. 

In the simplest case, we can set α = 0.5, that is, assume that the guide 
tangent to the spline at intermediate nodal points should occupy a middle position 

relative to adjacent segments of the linear interpolation spline. 

Figure 5 shows an example of interpolating a data set using a B-spline (1), 
Akima spline (2) and directional spline (3). 

 

  
Figure 5. B-spline (1), Akima spline 

(2) and directional spline (3) 

Figure 6. B-spline (1), DS3-spline 

(2), DS4-spline (3) 
 
It can be seen that, unlike the Akima spline, the directional spline does not 

have visible kinks, which for many practical applications turns out to be a 

sufficient basis for deciding on a satisfactory approximation of the original table 
function by such splines. Compared to the B-spline, spline «ejections» are less 

pronounced. 

When performing a computational experiment on thousands of random sets 

(1), a directional spline invariably showed resistance to «ejections» and kinks. 
 

3. Optimization of DS3-spline 

 
The aim of optimization is to make the kinks of the directional spline less 

noticeable, which are determined by the absolute value of the difference in the 

values of the second derivatives at the conjugation point of neighboring 
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polynomials. The magnitude of such a gap at intermediate points can be 
determined by the formula 

       
1 1 1 1

ε
(α) ( ) ( ) 3 , ( 1,2,..., 1).

2
i i i i i i i iD S x S x c c d i n   

       
             

(10)   

A computational experiment showed that in most cases, at extreme values 

of the directing coefficient α = 0 and α = 1, when the angles of the tangent to the 

curve at the intermediate points and one of the segments of the linear spline 
coincide, the directional spline usually has not only pronounced kinks, but also 

large «ejections». At intermediate values of α, these disadvantages are less 

noticeable. Therefore, there are α values at which these shortcomings will be least 

pronounced. 
The essence of optimization is to find such α = αopt at which the largest gap 

D(α) =Max Di(α), (i = 1, 2, …, n–1)                            (11) 

will be minimal. 
It is established that in most cases D(α) is piecewise linear functions with a 

single break point. However, there are frequent cases of functions with several 

kinks.  

Cases are noted where the function may not have an extremum, that is, its 

minimum is at one of the edges of the interval of variation of α. In such cases, it is 
advisable to take α = 0.5. 

The value of αopt can be found using one of the methods for minimizing 

unimodal functions [Kiefer, 1953; Brent, 1973; Dobson, 1983]. However, one can 
use the piecewise linearity property D(α) and, on this basis, propose a faster 

algorithm. 

Problem solving method and a description of the algorithm for finding αopt 
are given below. Values of the type T = (T.x, T.y, T.z), are used, where T.x, T.y are 

the abscissa and the ordinate of the point, T.z is the value of the derivative of the 

function D (α) at this point. 

Step 1. Set a sufficiently small number ε – determination accuracy αopt, as 
well as limit range A.x = 0; B.x = 1. 

Step 2. Find the value of the function A.y = D(A.x)  and A.z = [D(A.x+ε)–

A.y]/ε at the left end of the search interval. We define B.y = D(B.x)  and B.z = [B.y–
D(B.x–ε)]/ε – their analogous values at the right end of the search interval. 

Step 3. Using these points and derivatives we construct straight lines, the 

first of which passes through the point (A.x, A.y), the second through (B.x, B.y). It 
is easy to show that the abscissa of the intersection point of these lines can be 

found by the formula 

. . . . . .
.

. .

B y A y B zB x A zA x
x

A z B z

  



                                              (12) 
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We calculate the abscissa C.x = x+ε/3 shifted to the right of x by an 
amount less than ε. This is necessary so that point x falls into the range [A.x, C.x]. 

Step 4. If |C.x–A.x| <ε or |C.x–B.x| <ε, then the minimum point      αopt = x is 

found and the algorithm finishes its work; otherwise, we find similar values of C.y 
and C.z. If C.z and A.z are numbers of the same sign, then we set B = C, otherwise 

A = C and go to step 2 to perform a new iteration. 

Let us demonstrate the operation of the algorithm by the example of 

optimization of the function, which is shown in Figure. 6. 
To do this, in step 1, we set the search accuracy ε = 10-3. 

In step 2, we obtain A.x = 0; A.y = 1.2; A.z = –1,7; B.x = 0.999;      B.y = 

0.6; B.z = 1.7. Different signs of the derivatives A.z and B.z indicate that the 
function D(α) is unimodal [Kodnyanko – 1, 2019] and, therefore, its minimum is 

inside the segment. 

At step 3, by the formula (12) we find x = 0.644; C.x = 0.645. Since at step 
4 none of its conditions were met, we calculate C.y and С.z = 0,8 > 0. This means 

that the function increases to the right of x, therefore, the minimum is to the left of 

x. We set B = С and continue the search for the minimum of the function on the 

interval [0; 0. 645] of shorter length. 
At the new iteration, we get x = 0.425; C.x = 0.426; C.z = 0.8 > 0 and a 

new segment [0; 426]. 

At the next iteration, we find x = 0.425; C.x = 0.426. Now the condition 
|C.x–B.x| <ε is fulfilled. This means that the minimum of the function is at the point 

αopt = x = 0.425. 

Obviously, the number of iterations does not exceed k+1, where k is the 

number of kinks of the function D(α). In particular, this problem was solved in 
three iterations with two kinks of the minimized function. 

 

Table 1. Comparative characteristics of errors  

when calculating a function using splines 

x y(x) Δ1 Δ2 Δ3 
0,00 

0,05 

0,10 

0,15 

0,20 

0,25 

0,30 

0,35 

0,40 

0,45 

0,50 

0,55 

0,0000000 

0,0499792 

0,0998334 

0,1494381 

0,1986693 

0,2474040 

0,2955202 

0,3428978 

0,3894183 

0,4349655 

0,4794255 

0,5226872 

0,000E+00 

7,819E-08 

3,189E-08 

1,433E-08 

8,864E-09 

2,986E-08 

8,974E-11 

2,180E-08 

2,905E-08 

-2,711E-20 

4,830E-10 

8,824E-08 

0,000E+00 

-6,100E-05  

-1,010E-05  

7,158E-06   

2,348E-05  

-1,177E-05  

-1,624E-06  

6,243E-06  

-8,113E-06  

 -2,711E-20  

5,141E-06  

-2,120E-06  

 0,000E+00 

 3,529E-05 

 -5,012E-06 

 9,359E-06 

 -5,406E-06 

 3,179E-06 

 6,155E-07 

 -3,199E-06 

 4,885E-06 

 -5,421E-20 

-4,438E-06 

  2,857E-06 
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0,60 

0,65 

0,70 

0,75 

0,5646425 

0,6051864 

0,6442177 

0,6816388 

-6,664E-08 

-1,044E-07 

8,651E-07 

-2,716E-06 

 -6,810E-06  

4,300E-06  

3,549E-06  

 -1,707E-06 

  2,393E-06 

 -1,165E-06 

 -2,821E-06 

  1,296E-06 

 

In conclusion, we present a table of values of the function y(x) = sin x used 

in [Moreau, 1981] to estimate the error of the B-spline and Akima spline. Splines 

are built on a set of 14 random points. The calculations are carried out for equally 
spaced nodes. For comparison, directional spline data has been added to the table. 

Table 1 in columns Δ1, Δ2, Δ2 shows the differences between the exact value of the 

function y(x) and the values obtained using the B-spline (Δ1), Akima spline (Δ2) 
and directional spline (Δ3), respectively. 

B-spline showed higher accuracy. Among the last two, directional spline 

gave the best results. This is not an obvious result, since it was expected that the 

function y(x) supposedly has advantages in interpolating monotone functions, 
namely, in this example, the Akima spline should have shown better performance 

not only in comparison with the directional spline, but also with B-spline. 

However, in this case, these expectations were not realised. 
The presented idea allows to expand the scope of the approach to 

constructing a directional new spline that will be free from kinks and allows the 

possibility of its optimization to suppress emissions. The example is a directional 
spline of the fourth degree, the construction method of which is described below. 

 

4. Construction of fourth degree directional spline (DS4-spline) 
 
On each segment [xi-1, xi] we will represent the spline S(x) as a polynomial 

of the fourth degree 

       
2 3 4

1 1( ) , 1,2,..., .i i i i i i i i i iS x a b x x c x x d x x e x x i n           (13) 

At the joints of adjacent segments [xi-1, xi] for polynomials (3), we require 

the conditions for the spline and its first and second derivatives at the points (1) be 
satisfied 

1 1 1 1 1 1 1 1 1( ) ( ), ( ) ( ), ( ) ( ).i i i i i i i i i i i iS x S x S x S x S x S x        
         (14), (15), (16) 

Assuming, as before, bi are known and using (14), we obtain 

2

2
, ,i i i i

i i i i i i i

i

w c d h
c d h e h w e

h

 
                                (17), (18) 

where 

.i i
i

i

b u
w

h


  

Using (15) we find 
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2
2 1

1

3
2 4 ,i

i i i i i

i

h
c e h v d

h


                                                          (19) 

where 

1 .i i
i

i

b b
v

h


  

Substituting (18) into (19) we write 
2 2

21 1
1 1

3 3
2 2 , .

2 2 2 2

i i i i
i i i i i i i i i i i

i i

h v v h
c d h d w e h d h d w

h h

 
              (20), (21) 

Condition (16) gives the dependence 

2

1 16 3 .i i i i i ic e h c d h                                             (22) 

Substituting (20), (21) into (22) we find 

 
2 2

1 2
1 1 2 1 1

1

3
8 15 10 5 4 2 .i i

i i i i i i i i i

i i

h h
d h d h d v v w w

h h

 
    



 
       

 

 (23) 

Shifting the index in (23), we obtain recurrence formulas 

                                      1 1μ η λ ω , 1,2,..., 1,i i i i i i id d d i n                            
(24) 

where 

 
2 2

1
1 1 1

1

3
μ 8 , η 5 3 2 , λ , ω 5 4 2 .i i

i i i i i i i i i i

i i

h h
h h v v w w

h h


  



 
        

 

 

Formula (24) is a three-diagonal system of linear algebraic equations for 

unknown coefficients di, which, taking into account the obvious boundary 

conditions
0 0, 0nd d  , can be solved by the sweep method [Catmull and Rom, 

1974]. Further, the coefficients ci, ei can be found by formulas (17), (18). 

 

5. Optimization of DS4-spline 
 

Optimizing the DS3-spline, a one-parameter procedure was used. This is 

due to the fact that multi-parameter optimization in the limit gives Schoenberg B-

spline, which results in the loss of DS3-spline advantages. The DS4-spline is 
deprived of kinks; thus, its optimization is reduced to only maximum suppression 

of “outliers”. In this process, all guiding spline coefficients αi can be involved, with 

the help of which the DS4-spline coefficients are calculated 

                       1α (1 α ) , 1,2,..., 1.i i i i ib u u i n    
 
 

As criteria for optimality of this spline were used 
- the length L of the spline, 
- the difference R between its global maximum and global minimum. 

Criterion L is determined by the sum of the lengths of the spline segments 

and can be calculated using the well-known formula [Dietze and Schmidt, 1988] 
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 
1

2

1

1 ( ) ,
i

i

xn

i

i x

L s x dx




  
                                     

(25) 

where 

      
     

2 3

1( ) 2 3 4 .i i i i i i i is x b c x x d x x e x x
       

                   
(26) 

To calculate the criterion R, formula (26) was used, as well as the formula 

          
   

2

1( ) 2 6 12 .i i i i i is x c d x x e x x
     

                                               
(27) 

Using (26) we found the zeros of the equation and their type was 

controlled by using (27). 
Thus, both criterion L and criterion R are functions of many variables 

                                                       
 αK K

                                               
(28) 

where 

 1 2 1α α ,α ,...,α .n  

Obviously, Schoenberg's B-spline is a special case of the DS4-spline. 
Therefore, from the position of a minimum of these criteria, the optimal spline 

cannot be worse than the Schoenberg spline. 

In the process of minimizing the criteria, the requirements were followed 
for maintaining such shape of splines, the iso-geometry of which would correspond 

to the Schoenberg spline [Miroshnichenko, 1995]. 

Calculations of the DS4-spline showed that without taking measures, the 
spline can lose the specified shape. 

Among the reasons for the loss of shape are the following: 

– the spline may have protrusions of individual fragments of the curve, 
– new local extremes may appear on the curve, 
– new points for changing the spline curvature may also appear. 

These shortcomings are associated with the emergence of new local 

extremes, both the spline itself and its first and second derivatives, as well as new 
sign changes of its third derivative.  

During optimization, variants of such splines were rejected. 

Numerical experiments have made it possible to establish the fact that 

function (28) is multi-extreme, that is, it has many local minima, among which one 
should find a global minimum that corresponds to the spline of the optimal shape. 

So, for n = 12, for which most experiments were carried out, one would 

have to find the global minimum of the function of 11 variables, which seems to be 
an extremely difficult task. In the general case, the difficulties in obtaining a 

solution to such problem cast doubt on the value of the practical use of the spline 

under discussion. 
The way out was found by using the mentioned properties of the spline, 

which are dictated by the stringent conditions for maintaining its shape. 

The technique of minimizing the criteria is as follows. 
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Initially, a starting state is established for which a vector α is selected, all 
components of which are assumed to be equal to 0.5, and a starting DS4- spline is 

calculated. 

Next, a small-length step τ is assigned and one-parameter minimization is 
performed for each component of the vector α, for which the process starts from 

the starting state. The best coordinate wise splines obtained in this way give a lot of 

α – vectors, the number of which is m< n. Observations showed that no more than 

half of the initial starts usually pass through the filter of stringent requirements to 
preserve the shape of the spline. So, for example, for n = 12, usually m < 7. 

The next step is a similar one-parameter optimization, where vectors that 

have passed the filter of the first step are sequentially used as starts. Moreover, the 
number of new vectors that have passed the shape-preservation filter is also small 

and it is usually less than the same amount as the previous step. 

Recursion is carried out until none of the filtered vectors gives new vectors 
to continue the process. The result of optimization will be the spline with the 

lowest value of the criterion K. The calculations showed that, for example, for n = 

12 it is usually required to form a spline and calculate its characteristics 1000-2000 

times. 
Figure 6 shows the curves of the splines, which give a typical picture of the 

shape of the DS4-spline that is optimal according to the criterion. 

Such spline usually occupies a middle position between the Schoenberg 
spline and DS3-spline is closer to the first.  

As follows from the above data, the Schoenberg spline length is 19.70. The 

initial DS4-spline has a slightly longer length - 19.90. The optimized spline has a 

length of 16.82, which is 14.6% less than the Schoenberg spline. During the 
optimization, the algorithm improved the result 181 times. To solve the problem, it 

was necessary to calculate the spline 1312 times. 

The smallest length is DS3-spline. With a length of 11.58, it is almost two 
times shorter than the Schoenberg spline. 

Thousands of computational experiments performed for n = 12 showed that 

the optimized DS4-spline is shorter by 5–50% than the Schoenberg spline, and 
DS3-spline by 1.5–3 times shorter. 

Examples of optimization processes in dynamics can be observed on 

videos at the hyperlinks [Kodnyanko – 2020a, 2020b,2020c]. 

Experiments have shown that DS4-spline can significantly attenuate the 
manifestation of "emissions" Schoenberg spline. 

However, the best in this respect should be recognized DS3-spline, on 

which there are no emissions, and kinks are manifested very weakly, in many cases 
in practical implementations they are insignificant. 

In the process of studying the properties of the proposed splines, it was 

found that in addition to “outliers” and kinks, splines can have sharp peaks of local 
maxima and minima, which in some cases should be considered as interpolation 
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shortcomings. Below is proposed and described a method that allows blunting the 
"emissions" and peaks of extrema. 

 

6. Technique for blunting sharp spline vertices 
 

Let it be necessary to blunt the local minimum of any of the considered 

splines and let (xc, yc) be the point of such a minimum. We also consider the 

inflection points (xa, ya) and (xb, yb) located on both sides of the extremum. 
We introduce the local function of the spline  

                            
   ( ) , 0, 2, 2.

k m

a bg x G x x x x G k m                          (29) 

For its, there are obvious boundary conditions 

( ) ( ) 0, ( ) ( ) 0.a b a bg x g x g x g x        

Therefore, at the edges of the interval, the function does not introduce 
kinks and contributes to blunting of the spline in the region of its minimum. 

The maximum of this function takes place at 

          
       

1 1
( ) 0

k m

c c a b c b c c ag x G x x x x k x x m x x
 

                          (30) 

so 

 

 
, .

b c

c a

x x
m tk t

x x


 


 

If t < 1, then we take m = 2 + ε, where ε is a small number. Then k = m/t > 

2. Otherwise, for t ≥ 1, we take k = 2 + ε. Then m = kt > 2. 

Turn to linear interpolation spline 

( ) , ( ) , ( ) ,a b a a b bL x L x L L x y L x y     

where 

, .b a b a a b
a a

b a b a

y y x y x y
L L

x x x x

 
 

 
 

For the point of the considered spline minimum, we have 

     ( ) ,
k m

c a b c c cG x x x x L x y                             (31) 

where σ is the peak bluntness coefficient. 
For σ = 0, the addition of g (x) is absent; for σ = 1, the total spline q(x) = 

s(x)+g(x) touches the line segment L(x), which is the limiting case, since for σ> 1 

the total the spline will receive a new extreme maximum, on both sides of which 

two new minimums will be formed. Such modes do not ensure the preservation of 
the spline shape, therefore 0 ≤ σ ≤ 1. 

To maintain the shape, the total spline must also have a curvature of the 

same sign up to σ = σmax < 1. A given value can be determined from the condition 
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( ) 0.cq x   

Having differentiated the function q (x), we find 

   
1 1

( ) ( ) 0.
k m

c c a b cs x G k m G x x x x
 

       

It follows 

                             
   

1 1

( )
.

( )

c

k m

c a b c

s x
G

k m x x x x
 




  
                                        (32) 

From (31), (32) it turned out that 

 

       
max

1 1 1 1

( ) ( )
.

( )

c c c

k m k m

c a b c c a b c

L x y s x

x x x x k m x x x x


   

 


    
    (33) 

Relation (33) allows us to determine the maximum permissible coefficient 

σ 

  

 max

( )
.

( ) ( )

c c a b c

c c

s x x x x x

k m L x y


  


 
 

The bluntness of local maxima is carried out similarly. 

The decision on the extremes to be blunted can be made both in automated 

and automatic modes.  
Making automatic decision, a quantity can be used as a criterion for 

evaluating the extremum ( )e ck s x .  

Here is a description of the methodology for assessing extrema, subjected 

to automatic blunting. 

We will use DS3-spline, the graph of which is given in Figure 5. In visual 
assessment of the spline, two extrema can be distinguished, which must be dulled. 

One of them is a maximum with an abscissa x = 0.395, the second is a neighboring 

minimum with an abscissa x = 0.440. For the first ke = –2920, for the second ke = 

1871. The ke right criterion that follows in decreasing absolute value is the extreme 
right minimum with an abscissa x = 0.946, for which ke = 1123. Let us evaluate it 

as an extremum that does not require blunting. 

This simple analysis allows, as a first approximation, to formulate the 
following automatic expert assessment methodology: extrema that should be 

blunted automatically must satisfy the condition | ke | > 1200, if this does not 

contradict conditions for maintaining the shape of the spline. 
In Figure 7, as an example of blunting extrema, a linear interpolation 

spline, a B-spline, a DS3-spline and two fragments of a DS3-spline are shown, on 

which the extrema are blunted automatically in accordance with the method 

described above. In the calculation, the bluntness coefficient    σ = 0,75 σmax was 
adopted. 



 

 
 

 

 

Vladimir Kodnyanko 

____________________________________________________________ 

142 

DOI: 10.24818/18423264/54.3.20.08 

 
Figure 7. Linear interpolation spline (1), B-spline (2), 

DS3-spline (3) and DS3-spline with blunted extremes (4) 
 

The blunting technique can be applied to splines of any type. 

 

7. Conclusion 

 
The article proposes a method for constructing a cubic spline for a set of 

points on a plane. The spline is compared with Schoenberg B-spline and Akima 
and Catmull-Rom splines. It is shown that for unequally spaced points, at which 

the disadvantages of the named splines usually appear, in comparison with the B-

spline, it gives significantly lower oscillations. A spline with such a set of points is 

practically deprived of the strong kinks that are characteristic of Akima splines.  
It does not give loops and oscillations, which are a characteristic disadvantage of 

parametric splines, in particular, Hermitian splines, which include the Catmull-

Rom splines. A method for optimizing the weight coefficient of the directional 
spline is proposed, the purpose of which is to minimize the discontinuities of the 

second derivative of the function at its intermediate points. 
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